We are a research group in the Mechanical Engineering Department of San Diego State University in southern California. Our diverse team of researchers includes mechanical, chemical, and electrical engineers as well as bioengineers. Our research areas include MEMS, micro- and nano-fabrication, bionanoelectronics, microfluidics/nanofluidics, polymer-based photovoltaic technology, and computational sciences.
Our group collaborates with researchers at our institution and other national MEMS programs (including the various academic and industrial groups that spun-off the core Nanogen technology). We also have an active international program involving seminars and exchange visits. Our extended class 100 cleanroom facility (MicroFab & NanoFab Facility) (1600 sq. ft.) is equipped for most lithography processes including metal deposition, dry (DRIE) and wet etching, soft lithography, as well as characterizations including 0.25 micron resolution deep UV lithography capability with Micrascan III step and scan litho system. We also have a brand new 400 sq.ft. organic solar processing, packaging and testing facility. By 2018, we will move to brand new state-of-the-art 2400 Sq.ft facility in the new EIS complex
(I) NeuroMEMS Group(link)
Together with our collaborators at UW and MIT, we are working on flexible microelectrode neural pad that can be implanted in the brain to record data and/or stimulate specific sites.
(II) BioNanoelectronics Group(link)
This group is investigating the feasibility and long-term stability of DNA-based bionanoelectronics platform. This platform consists off DNA molecular wires and interconnects attached to carbon/graphite microelectrodes. The boarder impact of this study is in developing nanoscale modulation of electrochemistry and electric-fields that will form basis for advancing our knowledge in large-scale bio-nanoelectronics as well as electrochemistry and electrostatics at a sub-micron-scale.
(III) Polymer Solar Cell Group(link)
Using a new device architecture with light-trapping features, we have developed a new generation of polymer-based solar cells and OLED. The group also uses computational photovoltaics to develop new insights and fundamental understanding of interfacial issues between photoactive layers and electrode materials. Together with our collaborators, Dr. Kee Moon and Dr. Khaled Morsi, our work in this area has resulted in a number of patents and a licensing agreement with a company in South Korea.
(IV) Microfluidics
We have the function of the microelectrode neural pad is to sense signals from the motor cortex and then relay those signals to a small integrated circuit (IC) located on the back side electrodes. The IC then wirelessly communicates with a prosthetic or robotic limb in a closed loop manner.
(V) Computational Group
We have very active research in (i) computational electrochemistry for micro- and nano-electrochemical systems, and (ii) computational photovoltaics to drive our experimental work in organic PV technology. Our work in electrochemistry of micro- and sub-micron systems has resulted in a number of publications.